The following methods are used for factorization.
- taking common at the first time
The first method of factorization is taking common. Some Examples are mentioned below
a) 2a + 4b = 2a + 2x2b = 2 (a+2b) Here 2 is common.
b) 3xy + 6y = 3xy + 3x2y = 3y(x+2y) Here, 3y is common.
c) (a+b) (x+y) + (a-b) (a+b) = (a+b) {(x+y) + (a-b)} Here, (a+b) is common.
- Use formula method at the second method.
The following formula is most important useful for formula method.
a) (a+b)2 = a2 + 2ab + b2
b) (a-b)2 = a2 – 2ab + b2 or, (a+b)2– 4ab
c) a2+b2 = (a+b)2– 2ab or, (a-b)2 + 2ab
d) a2– b2 = (a+b) (a-b)
e) (a+b) 3 = a3+3a2b+3ab2+b3 or, a3+b3+ 3ab(a+b)
f) (a-b)3 = a3-3a2b +3ab2-b3 or, a3-b3 – 3ab(a-b)
g) a3+b3 = (a+b) (a2– ab + b2) or, (a+b)3 – 3ab(a+b)
h) a3 – b3 = (a-b) (a2+ab+b2) or, (a-b)3 + 3ab(a-b)
- 1st x last at the last method (if does not solved with first and second method.)
- ) 3x2+7xy+4y2
= 3x2+xy(3+4)+4y2
= 3x2+3xy+4xy+4y2
= 3x (x+y)+4y(x+y)
= (x+y) (3x+4y) Ans.
goods